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The (m/M)I/2~ 0 limit and the adiabatic approximation for a nonrelativistic 
system consisting of light and heavy particles of masses m, M are studied. The 
method used involves a standard representation of quantum mechanics, in which 
the limit above exists. The standard representation is described in some detail, 
and the Primas-Raggio theorem is derived, which implies that the limit 
(m/M)~/2~O,  the heavy-particle system is a static, semiclassical system, i.e., 
with a commutative algebra of observables. The adiabatic approximation is 
derived as the leading correction. 

1. I N T R O D U C T I O N  

As a mot iva t ion  for the present  study, we first consider  some heurist ic 
a rguments  concern ing  systems consist ing of  light particles with mass m and  
heavy one with mass M = m / e  2, where e is small and  dimensionless .  The 
Heisenberg uncer ta in ty  relat ions for the heavy particles 

h 
AxAp>- -  - (1) 

2 

can be pu t  on a form which is easier to interpret  kinematical ly,  

he 2 
A x A v  >- (2) 

2m 

by the relat ion p = M y .  Here we see that  a localized particle has an indefinite 
velocity, bu t  less indefinite the heavier  it is. The characteristic propert ies 
of  very heavy particles may  be approx imated  by the l imit e -> 0 (i.e., M --> co), 
subject  to the constra int  that the energy is kept finite. This a ssumpt ion  entails  

finite ~ (ep) finite as e -~ 0 (3) 
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Thus, 

( p )~ cc  and ( v ) ~ 0  f o r e - ~ 0  (4) 

consistent with (2). However, because of (4), the uncertainty relations 
involving p or v are of  less interest than an intermediate version involving 
the finite quantity ep: 

h 
AxA(ep)>~- -e~O for e ~ 0  (5) 

2m 

Apparently, one can infer that in the limit e --> 0, one obtains a theory with 
dynamical variables x and ~ ~ ep, which is classical, i.e., with commuting 
quantities. The present paper  is a detailed elaboration of this fact, together 
with a derivation of the adiabatic approximation for such a system. 

The mathematical  formalism for the study of  the limit e ~ 0 is suggested 
by Primas (1980b, 1981, 1984) and Raggio, but has unfortunately not been 
published in detailed form. Their results, as presented in (1980b), are 
therefore included in Section 3 of  the present paper. 

The main advantage of  the Primas-Raggio method is that it includes 
an explicit description of the limiting case e = 0, in which we obtain a theory 
which differs in certain fundamental  aspects from the theory at finite e. In 
fact, as the argument above suggested, we obtain a purely classical (commu- 
tative) theory in the variables x, r/ for the heavy particles. 

The study of this limit is made possible by a mathematical formalism 
which is more general than the usual irreducible Hilbert space representa- 
tions of  quantum mechanics, namely, the formulation in terms of W*- 
dynamical systems. For the necessary background, we refer to the reviews 
by Primas (1980a, 1981) which include extensive reference lists. For a 
mathematically rigorous and detailed exposure of  von Neumann algebras 
and standard forms, we recommended the book by Bratteli and Robinson 
(1979). 

After a sketch of the historical background given in Section 2, we 
review in Section 3 the theory presented in Primas (1980b). Here the "e  
representation" of  the system we are considering is described. In this 
representation, the operator algebra is a standard form (see Bratteli and 
Robinson, 1979, Ohapter  2.5). The limit system at e = 0 is described, and 
it is seen to have a classical part, described by a commutative W* algebra, 
and thus having a phase space representation. This part  describes the heavy 
particles. Thus, in the molecular case, the theory sustains the notion of a 
classical molecular "structure," on which almost all chemical theory is 
based. 

The theory is cast into a more complete form in Section 4. Here, the 
e representation is related to the canonical standard representation of ~ ( ~ ) .  
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The mapping from the usual representation of quantum mechanics to the 
e representation is explicitly constructed. The limit e -> 0 has some similarity 
to the limit h--> 0, which is considered elsewhere (Grelland, 1984a, 1984b). 

In Section 5, we proceed to the study of  the leading terms in the 
expansion in powers of e of the dynamics of the heavy-particle system. We 
obtain the adiabatic approximation. Our derivation differs, however, funda- 
mentally from the suggestions of Primas (1980b, 1981). We have thus given 
a theoretical justification for the studies of nuclear potential hypersurfaces 
in terms of electronic energies far from the equilibrium geometry of 
molecules. 

2. HISTORICAL OUTLINE 

In the adiabatic approximation of molecular theory, the dynamics of 
the system is described in two steps: 

(I) Relative to the electrons, the nuclei are assumed to appear as static, 
classical particles generating an external field, in which the electronic part 
can reach its stationary states for each nuclear configuration. 

(II) When the nuclei move within certain well-behaving subsets U of 
the nuclear configuration space, the electronic eigenvalues change smoothly, 
generating a set of energy hypersurfaces, one for each electronic eigenvalue. 
In the subsets U, the electronic eigenvalues are assumed to be isolated and 
nondegenerate to create well-defined surfaces. The nuclei, then, move as 
quantum particles with one of the electronic energy surfaces together with 
the internuclear repulsion as a potential. 

A modified version is to study the nuclear motion in a different time- 
scale s 

s=-et, e = ( m / M )  1/2 (6) 

where m, M are the electronic and (a typical) nuclear mass, respectively. 
This may be called the semiclassical adiabatic approximation (see below). 
Step (I) alone, choosing the nuclear configuration to be a minimum of the 
energy surface in (II) (the equilibrium condition), i.e., with a state vector 
for the electrons and a classical (localized) position for the nuclei, is the 
Born-Oppenheimer (1927) approximation. 

The adiabatic approximation was described by London (1928), prob- 
ably for the first time in a proper quantum mechanical context. The attempt 
by Born and Oppenheimer (1927)to underpin the idea was restricted by 
the equilibrium condition, and was only concerned with the energy spectrum 
and its separation into electronic, vibrational, and rotational subspectra. 
The theory was applied to diatomic molecules only. Later, Born (1954) 
replaced this derivation by a simpler and more general one (see Baym, 
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1969) designed to justify the adiabatic approximation. Both attempts have 
been criticized by Woolley (1976) and Woolley and Sutcliffe (1977). A 
rigorous derivation of the Born-Oppenheimer approximation for the energy 
spectrum of  diatomic molecules, has been obtained by Combes (1977) and 
Combes and Seiler (1978), using modern spectral theory of operators in 
Hilbert spaces. Thus, the original Born-Oppenheimer problem has been 
solved (i.e., for diatomic molecules). 

An attempt at a rigorous derivation of the adiabatic approximation as 
an explicitly time-dependent problem, is due to Hagedorn (1980). He uses 
a method designed for the study of the time-dependent h ~  0 limit, which 
forces him to study the nuclear motion on the time scale s [equation (6)]. 
In this time scale the nuclei move adiabatically (i.e., with the electron energy 
a surface as potential), but they move as semiclassical particles with a 
renormalized mass of  unit order of  magnitude. Thus one is left with two 
problems: 

(a) 

(b) 

How can a classical particle produce the nuclear vibrational-rotational 
spectrum? 

The appearance of the actual nuclear mass in the equations of motion 
in the traditional adiabatic approximation is essential to obtain the 
correct spectra. If (a) could be solved, how could we obtain the same 
spectrum with a renormalized mass? 

On the other hand, the Hagedorn solution apparently solves another prob- 
lem, which we believe was originally pointed out by Woolley (1976); In 
the Born-Oppenheimer approximation, the nuclei are treated as classical 
particles. However, classical particles are incompatible with quantum 
mechanics, at least with stationary states. Hence, we must impose a new 
concept, not derivable from quantum mechanics (as it seems), to obtain 
the Born-Oppenheimer approximation. An extensive survey of  the dis- 
cussion raised by Woolley is given by Claverie and Diner (1980). As in the 
h ~ 0 problem, Hagedorn solves the e ~ 0 problem by studying finite differen- 
ces within the conventional irreducible formalism of quantum mechanics, 
instead of  taking the limit e = 0, which does not exist within that formalism. 

A deeper understanding of the problem was made available by some 
work by Primas and Raggio (Primas, 1980b, 1981) who point out that the 
semiclassical limit e ~ 0 can be derived from quantum mechanics by using 
a type of representation called a standard representation, i.e., a yon 
Neumann algebra of standard form. This method is the starting point of 
the present paper. Moreover, Primas (1981) suggests that problem (a) can 
be solved in the semiclassical adiabatic approximation by stochastic 
methods. However, problem (b) seems to exclude the possibility of leaving 
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the original time scale t. The present paper therefore presents a derivation 
of  the adiabatic approximation from the t dynamics of the molecule. 

3. THE e R E P R E S E N T A T I O N  A N D  T H E  (m/M)l/2--~O LIMIT 

We now describe the representation of  quantum mechanics in which 
we will work. For finite values of e, this representation is equivalent to the 
usual irreducible Hilbert space representation, but it is based on the more 
abstract notion of a W*-algebraic system. What we want to describe is a 
nonrelativistic system consisting of  K heavy particles of  mass Mj = Aim~ e 2 
( j  = 1 , . . . ,  K)  and L light particles of mass m. e = (re~M) ~/2, where M = 
Mj/Aj, is thus a dimensionless parameter of the theory. The parameters Aj 
are assumed to be of unit order of  magnitude. 

The bounded physical quantities (bounded observables) of  the system 
are represented by the self-adjoint elements of a W*-algebra A, which is 
*-isomorphic to the set ~ ( ~ )  of bounded operators on ~. (A *-isomorphism 
is sufficient to obtain "physical equivalence" (see, e.g., Primas, 1980a, 
Chapters 4.4 and 5.4)). In our case, ~_c L 2 (R3(K+L)), where ~ is the 
subspace of  (anti-) symmetric functions, according to the fermion or boson 
character of each particle. Thus, 5~(~) is one possible (and indeed the most 
common) representation of A. The states (epistemic states, in the ter- 
minology of Primas) of the system are represented by the normal states (in 
the mathematical sense) of A. In the usual representation described above, 
these correspond to the density operators in ~(Y(). The unbounded quan- 
tities of the system are represented by unbounded operators in Y(, affiliated 
to 2f (~) .  

In the e representation, A is represented by a subalgebra M~_ 
5r174 ~ )  defined below. It may be defined in terms of  the corresponding 
representatives of the canonical positions and momenta. (We will later give 
a different, but equivalent definition.) First, we define the operators ~lj, ~j, 
~1~, ~ .  (All the following operator expressions are assumed to denote 
self-adjoint extensions of the given operator forms defined in the Schwarz 
space in ~ |  Let f ( x , y ) = f ( x ~ . . ,  xr,+Lyl. . .YK+L) be an element in 
Y(| ~. Then, 

~j f ( x ,  y) = y J ( x ,  y) 

~jf(x,  y) = x j f (x ,  y) 
(7) 

0 
,q'jf(x, y)  = ih f ( x ,  y)  

Ox j 

~jf(x,  y) = - ih  o@jf(x , y) 
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The m o m e n t a  and  coordinates  of  the system are represented  by the opera tors  

1 1 r 
pj = p j ( s )  = -  ~lj + ~ l j ,  

E 

q j = p j ( e ) = ~ j  i , - -  ~ E , [ ~ j ,  

p j =  1 f 
"q) + 2~j, 

1 t 

j = l  . . . K  

j = I . . . K  

j = K + I  . . . K + L  

j = K + I  . . . K + L  

(8) 

Note  that  the index j indicates the type of  part icles descr ibed by (pj, qj). 
1 -<j --- K cor respond  to particles of  mass Ms, K + 1 - j  -< K + L cor respond  
to part icles o f  mass  m. It  follows f rom (8) that  

[qi, Pj] = ihtSi/~ 
The von N e u m a n n  a lgebra  genera ted  by {Pi, q/} or, equivalent ly,  by their  
spectral  families,  may  be defined as a b icommutan t .  The  c o m m u t a n t  S '  o f  
a subset  Sc_ ~ ( ~ |  is defined as 

d e f  
S' = {x ~ 5 r 1 7 4  ~)[[x, s] = 0Vs e S} 

and the b i c o m m u t a n t  is S " =  (S ') ' .  We now define the representat ive M~ of  
A as the von N e u m a n n  algebra  genera ted by the pj, q j ' s :  

M~ = {Pl �9 �9 �9 PK+Lql - - -  qK+L}" 

This ' representa t ion  will be denoted  the e representat ion.  M,  can be decom-  
posed  into a "heavy-par t i c le"  and a " l ight-par t ic le"  part:  M~ = M ~  | M L 

M f f = { p l . . . p K q l . . . q K } " ,  M ~ = { p K + l . . . p r + L q K + l . . . q K + L } "  

In  the next  section, we prove  that  M~ really is a representat ion.  We also 
show that  M~ is a s tandard  form. In the r emainder  of  this section, we state 
a few useful  facts abou t  the subalgebras  of  ~ ( Y f |  Ys before  p roceed ing  
to the s tudy o f  the e ~ 0 limit: 

~(  Yg| Yf) = M~ | M'~ (9) 

where  M'~ is the c o m m u t a n t  o f  Me. It  is useful  to construct  the genera tors  
of  M'~: 

1 1 
~j(e)  = - - ' , U  + 2-qj, j = 1 . . .  K 

E 

q . A ~ )  = , , ~j+~e~ j ,  j =  1 . . .  K 
0 o )  

1 t pj = - ' q j  + 211s,  j = K + I  . . . K + L  
l ! tlj = l~j + ~ j ,  j =  K +  1 . . .  K + L  

t __ 
M ~  - { P l  �9 �9 �9 p K + L q ,  �9 �9 �9 q K + L } "  (11) 
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The importance of the formalism outlined above lies in the fact that ~q (~ |  
Y() also contains the commutative von Neumann algebra 

K 
Mo ={~h. . .~ lK~, - - -~K}"  (12) 

M0 K can be identified with L~ 6K), with elements acting as multiplication 
operators on Y(| Y(. Hence, Mo K is an algebraic representation of  a classical 
system with phase space R 6r, defined by the canonical momenta and 
coordinates lh  �9 �9 �9 "qK ~ �9 �9 �9 ~K- The Primas-Raggio (Primas, 1980b) theorem 
states that in the infinite mass limit 

M~-~  M ~  

in the following, rigorous sense: 

as e ~ O  

The Primas-Raggio Theorem 

sr-lim qj = ~:j 
e ---~ 0 

(13) 

sr-lim (epj) ='q~, j = 1 . . .  K 
t~--~0 

(14) 

where sr-lim denotes strong limit in the resolvent sense. The proof  of the 
theorem is mathematically simple [observe that the pairs (~j, ~j) and (-q~, ~l~) 
commute, and hence can be simultaneously diagonalized]. The physical 
importance of  the result above makes it deserve the name "theorem." 

In the molecular case, when the heavy particles are nuclei and the light 
ones electrons, this is the "Born -Oppenhe imer"  limit. Since the nuclear 
system in this ,limit becomes a classical one, the limiting case cannot be 
described by the traditional, irreducible representation of A. M g  can be 
identified with the nuclear system of structural chemistry. 

We now consider the dynamics of the limit system M o r |  L. It can 
be studied in different time scales--the original time t, and the scale s = et, 
which correspond to infinite t-time intervals in the limit e = 0. The behavior 
o f  the heavy Particles in the s scale is studied by Hagedorn (1980), and is 
discussed by Primas (!981). 

The time evolution is generated by the one-parameter group [see eqs. 
(27) and (28), where the  form given is described in  Bratteli and Robinson 
(1979), p. 259], 

Xt = UtXoU-t, Ut = e -(i/~)ix (15) 

i (  1 K + L  1 ~{ = j ~  = 2 -2 2 -2 
1 , - ~ J  (p j  -- p j  ) "b j=K+lX ~ (Pj -- Pj  ) 

+ V ( q , . . .  qK+L)-  V ( q , . . .  qr§ (16) 
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where V is a sum of pair interactions. To expose the parameter e, we write 

Yf(e) e ~ 1 K+L 1 2 -2 
=mj= ,~ - )~u"q~  + Y~ ~ m ( P j - P j )  j = K + I  

E E ) 
+ v ~ , - ~ g ~  . . .  ~,, - ~  ~ ,q , ,+ , . . .  q,,+L 

( ) + V ~ , + s  +_e , _ 2~'1"''~K 2~KqK+I'''qK+L (17) 

Hence 

K+L 1 2 -2 
ffbr(0) = E ~ m  ( p j  -- PJ) 'q-  V ( ~ I  " " " ~ K q g + l  " "" q g + L )  

j = K + I  

- V(~L...  ~r~lK+,-. .  qK+L) (18) 

Since [Yf(0), X] = 0VX E Mo r ,  there is no t-time evolution of the algebra 
M ( ,  i.e., the heavy particles are static particles, the positions of which 
appear as a classical parameter in the potential term. Thus we have obtained 
the Born-Oppenheimer approximation as defined in Section 2. The result 
is in accordance with the conceptual structure on which most traditional 
methods of molecular and solid state physics are built. It is also in accord- 
ance with the leading terms of the traditional Born-Oppenheimer type of 
expansion, but with the important generalization that our derivation is 
independent of the equilibrium condition. 

We do not deal with the s-time evolution of the heavy particles. 
Hagedorn's (1980) study shows that in this time scale, the heavy particles 
move as semiclassical particles (i.e., still described by the algebra M ( )  of 
mass Mj/e 2. Because the original mass Mj is essential in explaining the 
vibration-rotation spectra of molecules, we disagree with Primas (1981) 
that these spectra may be obtained from the s-time dynamics with the aid 
of  stochastic methods. A different method, leading to the adiabatic approxi- 
mation, is described in Section 5. 

4. CONSTRUCTION OF THE e REPRESENTATION 

The e representation can be constructed from the canonical tracial 
standard form of ~ ( ~ )  by a unitary transformation. By this construction, 
we expose explictly the map ~ ( ~ ) - ~ M ~ ,  which is a * isomorphism. 
Moreover, we become able to construct explicit expressions for the state 
representatives. It is also shown that M~ is a standard form. 
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The canonical, tracial standard representation of AT(Yg) is the von 
Neumann algebra Mc ~ AT(~| Yg) = AT(~) | AT(~) 

Mc = {x |  I I x e AT(~)} (19) 

The conjugation of this standard form is given by the operator Jc 

Jc(q~ | 0) = ~ |  4~, ~b, 0 e ~  (20) 

The commutant of  M~ is 

M" = { l |  e AT(~)} (21) 

and 

jc (x |  1) = Jc(x| 1)J~ = 1 |  (22) 

For a given basis {~bk} of ~,  we have a corresponding cyclic, separating 
vector l l  for M~: 

[l = ~. ~k | ~bk (23) 
k 

The self-dual cone P _  ~ |  ~ is the set of  elements of the form 

xj (x)a  =Y (x~ ,~) |  x = x |  1 e Mc (24) 
k 

which are exactly the kernels of the positive Hilbert-Schmidt operators in 
Me. The set of positive Hilbert-Schmidt operators in M~ is denoted P. 

If  a state is represented by the density operator P in the usual Schr6din- 
ger representation, the corresponding state representative in the canonical, 
tracial standard (cts) representation is the integral kernel F(x , y )  of  the 
positive Hilbert-Schmidt operator T = ~/p. It is easily seen that if p is a 
pure state corresponding to a normalized vector ~ e ~,  

F(x, y) = O(x) |  ~(y) (25) 

The expectation value of X ~ Mc for the state F c Pc is 

( X ) = ( F [ X F ) =  f f F(x, y ) X F ( x , y )  dxdy (26) 

The form of the evolution operator is determined partly by the correspon- 
dence with the irreducible Schr/Sdinger representation, and partly by the 
condition that P should be left invariant. This condition implies the existence 
of  a Schr6dinger picture on the state representatives in P. The resulting 
evolution operator is shown by Bratteli and Robinson (1979, p. 259) to be 

T( to, t) = e -ix('-to)/h (27) 

= H - j ( H )  = H |  1 - 1 @ H (28) 
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where H is the Hamiltonian of the Schr6dinger representation. We have 
thus completed our description of the cts representation, and we proceed 
to the e representation by describing the unitary transformation relating 
the two representations. 

We define the unitary operator U~ on 

(U~F)(xl . . .  X K + L Y l . . .  YK+L) 

e 3K/2 f ( e ~" 1 
- (2~h)3(,~+~>/~ j F x , - ~ r , , . . . ,  x ~ - ~ r ~ ,  x,~+,-~r~+,, 

1 E E ! 
�9 . . , X K +  L - - ~ r K + L ,  X 1 - b ~  r l ,  . . . , x K - t - ~  r K ,  . . . , X K +  1 + ~ r K + l ,  

' 
�9 . . ,  j~ rjyj) ar, . . .drK+L (29) 

From the cts representation (Me, J~, Pc), we obtain the e representation 
(Me, J~, P~) by 

m~ = U~McU~' (30) 

J e  = U e J c U 2 1  ( 3 1 )  

P~ = U~P~ (32) 

For the state representative F ~ P~, we obtain the representative 

G = U~F e P~ (33) 

We list here some results of the transformations (30)-(33) (consult the 
definitions in the preceding section, j c { 1 . . .  K + L}): 

U~(- ih ~xj) U-~' = pj (34) 

U~(xj: ) U~ -~ = qj (35) 

U~(-ih O-'~U-~t=~j (36) 
\ oYS/ 

U~(y s. )U~'  =r (37) 

J~: G(x,y)-->G(x, -y) ,  G ~ |  (38) 

j~(X(x, y)) = X*(x, -y) ,  X e LP(~| ~ )  (39) 

Hence, we have obtained the representation described in Section 3. 
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5. ADIABATIC A P P R O X I M A T I O N  

We are now going to consider the lowest-order dynamics of  the heavy 
particles by going beyond the limit e = 0. 

The result of our study will be seen to be the widely used adiabatic 
approximation,  where the light-particle part  contributes to the heavy-particle 
potential with the energy expectation value at each heavy-particle configur- 
ation. Our derivation is not based on the equilibrium condition, and hence 
goes beyond the result of  Born and Oppenheimer  (1927). It also is a different 
result from that of  Hagedorn (1980), who considers the s-time evolution 
in M0 n. Our result gives a theoretical foundation of the nonequilibrium 
adiabatic approximation of atomic and molecular physics and chemistry, 
which is basic to current studies of  interaction potentials and collision 
problems. 

In the preceding sections, we have obtained a zeroth-order algebra 
M~: | M L with a corresponding state space and a zeroth-order time evol- 
ution. To go beyond the limit e = 0, it would be desirable to proceed by 
expanding all these interrelated structures order by order. However,  to 
obtain the leading terms of the correction, a simpler method can be applied, 
which is in closer correspondence with the traditional points of  view. That 
is, we choose to describe the algebra of physical quantities to infinite order, 
i.e., to work with the heavy-particle algebra M K~ . However, we include the 
leading terms (in e) of  the evolution equations only. This procedure is 
described below. Our method contains a more accurate description of  the 
elements of  the algebra than necessary, which is of  course acceptable, and 
in this case it simplifies the equations. [Primas'  (1981) suggestion to expand 
the time evolution over the zeroth-order algebra must be incomplete, since 
the correction terms of the algebra of  quantities also have to be included. 
By using the complete algebra this problem is circumvented.] 

First, we divide the potential into two terms: 

V= g~ = VEh(ql... qK)+ vh/(ql . . ,  qK+L) (40) 

where V h describes the interaction between the heavy particles only, while 
V ht describes interaction with and between the light particles. V~, V h, V m 
are functions of  e through qj=qj(e), j= I , . . . ,K.  Now we derive an 
expression for pj, j = 1 . . .  K : 

pj = ( ih)- ' [pj ,  K ]  

=(ih)-l{l[.qj, 1 , } v~]+d~j, K] (41) 
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where 

~[~ j ,  v,]= -a-s Vo+O(e) 

1 
N}, vA = o(~) 

Hence, the leading term is 

0 
pj=-~-~ jVo  (42) 

We introduce the function Hl~, depending on e through vht: 

(42) can be replaced by 

K+l p:~ 
Hle=3 ~K+, 2 --~'3F Vhe' 

0 l 0 Ro-  Vo 

(43) 

(44) 

In general, we may obtain a reduced equation for the heavy particles alone 
by averaging over the light-particle coordinates of  Heisenberg state, which 
defines a boundary  condition. Each choice of a Heisenberg state leads to 
one particular reduced Heisenberg-picture equation of motion. In our case, 
the leading terms of the Heisenberg states are the zeroth-order states ]E,,e) e, 
s c = (~l �9 -- ~K), specifying the positions of  the heavy-particles and the corre- 
sponding solutions of  the light-particle equation at this position. At each 
heavy-particle configuration, we have an energy spectrum where the eigen- 
values are assumed to adapt  smoothly to the motions of  the heavy particles. 
This particular property of  the states, which stems from the particular 
structure of  the e = 0 limit, makes the adiabatic reduced equation more 
accurate than a general Hartree-type decomposit ion or other reducing 
schemes built on averaging the interactions. However, such a well-defined 
reduced equation of motion for the heavy particles can only be expected 
to be obtained for certain open subsets U___ R 3K of the configuration space 
of the heavy particles. U is assumed to fulfill the following condition: (1) 
For each ~:, E,,e is an isolated, nondegenerate eigenvalue of the light-particle 
Hamiltonian in the limit e = 0. We will also in the following assume that: 
(2) En, e (for one particular n) is analytic as a function of ~: e U. [For diatomic 
molecules, it has been shown generally that E is an analytic function of 
the interatomic distance; see Combes and Seiler (1979)]. 
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For ~: r U, we obtain the reduced equation corresponding to the boun- 
dary condition defined by the family Er 

pj = - ( E ,  O-~jH~olE,),-o~Vho 
J 

8 
= - O-~j (Er Vo h) (45) 

by the Hel lman-Feyman theorem. We define the function 

W(~:) = E~+ Voh(~ :) (46) 

The replacement of W(~:) by W(qi ... qK) in (45) involves the inclusion of 
higher-order terms only: 

W ( q l . . . q K )  = W(r189 ~ dE ~: 
j = l  ~ j "  J ' ~ -  " " " (47) 

Hence, to leading order, (45) can be replaced by the quantum Hamilton 
equation 

0 
Ps =~qS W(ql""" qK), [q), Pk] = ihSjkl (48) 

TO obtain the complete Hamilton equations of motion, We include the 
equation for qj to infinite order: 

q - =  PJ (49) 
' Mj 

We have thus obtained the equations of motion for the heavy particles as 
quantal particles, in accordance with the usual conceptions of the adiabatic 
approximation. Note that we have not obtained any "adiabatic wave func- 
t ion";  the equations for the light and the heavy particles are derived in 
different conceptual context. (48) and (49) are equivalent to a Schrfdinger 
equation with potential W, and can be solved with traditional methods. 
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